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Abstract

Program certification aims to provide explicit evidence that a program meets a specified
level of safety. This evidence must be independently reproducible and verifiable. We have
developed a system, based on theorem proving, that generates proofs that auto-generated
aerospace code adheres to a number of safety policies. For certification purposes, these
proofs need to be verified by a proof checker. Here, we describe and evaluate a semantic
derivation verification approach to proof checking. The evaluation is based on 109 safety
obligations that are attempted by EP and SPASS. Our system is able to verify 129 out of the
131 proofs found by the two provers. The majority of the proofs are checked completely in
less than 15 seconds wall clock time. This shows that the proof checking task arising from
a substantial prover application is practically tractable.

1 Introduction

Program certification tries to show that a given program achieves a certain level of quality,
safety, or security. Its result is a certificate, i.e., independently checkable evidence of the prop-
erties claimed. Certification approaches vary widely, ranging from code reviews to full formal
verification. The highest degree of confidence is achieved with approaches that are based on
formal methods, and use logic and theorem proving to construct the certificates.

Over the last few years we have developed, implemented, and evaluated a certification
approach that uses Hoare-style techniques to formally demonstrate the safety of aerospace
programs that are automatically generated from high-level specifications [WSF02a, WSF02b,
DFS04a, DFS04b, DFS05]. In that work, we have extended a code generator so that it simulta-
neously generates code and the detailed annotations, e.g., loop invariants, that enable fully au-
tomated safety proofs. A verification condition generator (VCG) processes the annotated code
and produces a set of safety obligations that are provable if and only if the code is safe. An auto-
mated theorem prover (ATP) discharges these obligations and its proofs serve as certificates; we
focus on automated—as opposed to interactive or (the auto-modes of) tactic-based—provers,
since we are aiming at a fully automated “push-button” tool.

For certification purposes, users and certification authorities like the FAA must be assured—
or better yet, given explicit evidence—that none of the individual tool components yield incor-
rect results and, hence, that the certificates are valid. The assurance can take a variety of different
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forms, e.g., tool pedigree, code inspections, paper-and-pencil proofs, or result checking. In this
paper, we focus on automatically checking the correctness of the proofs generated by the ATP,
which are crucial elements in our certification chain.

Proof checking is of course not necessary if the applied ATP is known to be correct. How-
ever, program certification is a difficult task that requires substantial “deductive power”: the
longest proof found during experiments involved more than 8000 inference steps. Consequently,
simple “correct-by-inspection” theorem provers like leanTAP [BP95], or tactic-based provers
built on top of a trusted kernel like Isabelle [Pau89], are not powerful enough.1 Instead, we need
to employ high-performance ATPs, which use complicated calculi, elaborate data structures,
and optimized implementations. This makes formal verification of their correctness infeasible
[MSM00]. One could argue that these provers have been extensively validated by the theorem
proving community (e.g., the soundness checks required for participation in the CADE ATP
System Competition (CASC), [PSS02]), so that a formal verification is not necessary. However,
this argument by tool pedigree is weak. Most ATPs are under continuous development and sin-
gle versions are never subjected to enough validation to achieve sufficient “social validation.”2

Moreover, the validation is necessarily incomplete. There have been several published instances
of (unintentional) unsoundness in ATPs participating in the CASC, which have been detected
only afterwards [SS99, Sut00b, Sut05].

As an alternative to formally verifying or extensively validating the ATPs, they can be ex-
tended to generate sufficiently detailed proofs that can be independently verified by a proof
checker. The checker’s function is to verify that the ATP’s output is really a proof in the logical
system in use. There are several approaches to proof checking, including the syntactic valida-
tion of Otter proof steps by Ivy [MSM00], higher-order proof term reconstruction in Isabelle
[BN00], higher-order proof step checking in HOL [Won99], reducing proof checking to type
checking as in Coq [BC04], and semantic derivation verification [SB05]. Semantic derivation
verification has been used in this work. In semantic derivation verification, the required seman-
tic properties of each proof step are encoded in one or more proof check obligations (typically
an implication from the premises of the applied inference rule to its conclusion), which are then
discharged by trusted ATPs. This way, the trusted ATP verifies the proof output of the original
ATP. This approach is tractable because the correctness proof for each individual step in the
original proof is substantially easier than the original proof itself, and thus within reach of the
trusted ATP. For certification purposes, all proofs found by the trusted ATP become part of the
certificate that is delivered by the overall certification system.

This paper describes how a semantic derivation verifier has been used to check the proofs
that are found by ATPs for the safety obligations generated in the program certification process.
The success of ATPs in discharging the safety obligations has been described in [DFS04a].
The success of (trusted) ATPs in verifying the resultant proofs is demonstrated here. Section 2
provides the necessary background on the program certification process, and Section 3 describes
the semantic verification technique. Sections 4 and 5 provide empirical data that illustrate the
success of the approach. Section 6 concludes, and discusses directions for future work.

1See http://www.cl.cam.ac.uk/users/jeh1004/software/metis/performance.html for
benchmark data.

2The notable exception is Otter [McC03b], which has been essentially unchanged since 1996. However, previous
experiments have shown that its performance is not sufficient for discharging the safety obligations we generate
[DFS05].
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2 Formal Program Certification

Formal program certification is based on the idea that the mathematical proof of some program
property can be regarded as an externally verifiable certificate of this property. It is a limited
variant of full program verification because it proves only individual properties and not the
complete behavior, but it uses the same underlying technology.

2.1 Safety Policies

Formal program certification ensures that a program complies with a given safety policy. This
is a formal characterization that the program does not “go wrong”, i.e., does not violate certain
conditions. A safety policy is defined by a set of Hoare-style inference rules and auxiliary
definitions. The formal basis of this approach is explored in [DF03].

Safety policies exist at two levels of granularity. Language-specific policies can be ex-
pressed in terms of the constructs of the underlying programming language itself. They are
sensible for any given program written in the language, regardless of the application domain.
Typical examples of language-specific policies are array-bounds safety (i.e., each access to an
array element to be within the specified upper and lower bounds of the array) and variable
initialization-before-use (i.e., each variable or individual array element has been assigned a de-
fined value before it is used). Various coding standards (e.g., restrictions on the use of loop
indices) also fall into this category. Domain-specific properties are, in contrast, specific to
a particular application domain and not applicable to all programs. These typically relate to
high-level concepts outside the language. In principle, they are independent of the target pro-
gramming language although, in practice, they tend to be be expressed in terms of program
fragments. A typical example is matrix symmetry which requires certain two-dimensional ar-
rays to be symmetric.

2.2 Generating Safety Obligations

For certification purposes, code must be annotated with information relevant to the selected
safety policy. The annotations contain local information in the form of logical pre- and post-
conditions and loop invariants, which is then propagated through the code. The fully annotated
code is then processed by a verification condition generator (VCG), which applies the rules of
the safety policy to the annotated code in order to generate the safety conditions. As usual,
the VCG works backwards through the code, and safety conditions are generated at each line.
Our VCG has been designed to be “correct-by-inspection”, i.e., to be sufficiently simple that
it is straightforward to see that it correctly implements the rules of the logic. Hence, the VCG
does not implement any optimizations, such as structure sharing on verification conditions or
even apply any simplifications. Consequently, the generated verification conditions tend to be
large and must be simplified. The more manageable simplified verification conditions can then
processed by an ATP.

2.3 Certifiable Program Synthesis

As usual in Hoare-based approaches, the annotation effort can quickly become overwhelming
and constitute a barrier for the adoption of the technique. This can be overcome by a certifiable
program synthesis system that automatically generates the code and the detailed annotations
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from a high-level specification of the problem. The basic idea is to make the annotations part
of the code templates so that they can be instantiated and refined in parallel with the code frag-
ments. We have implemented this approach in two synthesis systems, AUTOFILTER [WS04],
which generates state estimation code based on the Kalman filter algorithm, and AUTOBAYES

[FS03], which generates statistical data analysis code.
Figure 1 shows the overall architecture of a certifiable program synthesis system. At its core

is the original synthesis system that generates code for a given specification. The core system
is extended for certification purposes (i.e., by the annotation templates), and augmented with a
VCG, a simplifier, an ATP, and a proof checker. These components are described in more detail
in [DF03, DFS04b, DFS04a].
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Figure 1: Certifiable program synthesis: System architecture

Similar to proof carrying code [NL98], the architecture distinguishes between trusted and
untrusted components, shown in Figure 1 in red (dark grey) and blue (light grey), respectively.
Components are called trusted—and must thus be correct—if any errors in them can compro-
mise the assurance provided by the overall system. Untrusted components, on the other hand,
are not crucial to the assurance because their results are double-checked by at least one trusted
component. In particular, the correctness of the certifiable program synthesis system does not
depend on the correctness of its two largest components: the original synthesis system (includ-
ing the certification extensions), and the ATP; instead, we need only trust the safety policy, the
VCG, and the proof checker.

3 Semantic Derivation Verification

The proofs produced by ATP systems can be considered more abstractly as derivations. For
our purposes, a derivation is a directed acyclic graph (DAG), whose leaf nodes are formulae
(possibly derived) from the input problem, whose interior nodes are formulae inferred from
parent formulae, and whose unique root node is the final derived formula. In semantic derivation
verification, the required semantic properties of each inference step in a derivation are encoded
in one or more proof check obligations. These are then discharged by trusted ATPs.

Derivation verification involves three notionally distinct phases. First, it is necessary to
check the overall structure of the derivation. This ensures that the ATP output actually is a
well-formed derivation DAG. Second, it is necessary to check that each leaf node is a formula
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that occurs in, or is derived from, the input problem. This ensures that the ATP actually solves
the original problem. Third, it is necessary to check that each inferred formula has the required
semantic relationship to its parents. This finally ensures that the proof is correct. The required
semantic relationship of an inferred formula to its parents depends on the intent of the inference
rule used. Most commonly an inferred formula is intended to be a logical consequence of its
parents, but in other cases, e.g., Skolemization and splitting, the inferred formula has a weaker
relation to its parents. A comprehensive list of inferred formula statuses is given in [SZS04].
Consequently, there are different forms of proof check obligations; currently GDV distinguishes
between theorem obligations, satisfiability obligations, and leaf theorem obligations, which are
explained in more detail in the following sections.

The main advantage of semantic derivation verification over other approaches is that it de-
couples proof checking from proof search—any ATP can serve as the trusted system that checks
the output from the untrusted production system. Moreover, the approach is independent of the
particular inference rules used in the production ATP, and is also robust with respect to any
preprocessing of the input formulae that the production ATP might perform.

3.1 Logical Consequences and Relevance

The basic technique for verifying logical consequences is well known and quite simple. The
earliest use appears to have been in the in-house verifier for SPASS [WB+02]. For each infer-
ence of a logical consequence in a derivation, a theorem obligation is formed; this formalizes
that the inferred formula is a logical consequence of the parent formulae. If the inference rule
implements any theory (e.g., paramodulation implements most of equality theory), then the cor-
responding axioms of the theory are added as axioms of the obligation. The obligation is then
handed to the trusted ATP system. If the trusted system solves the problem (i.e., finds a proof),
the obligation has been discharged.

In practice (see Section 3.5), each attempt to discharge an obligation is constrained by a CPU
time limit. Thus the failure to prove a theorem obligation may be because it is actually invalid
(indicating a fault in the original derivation), or because the obligation is too hard for the trusted
ATP system to prove within the CPU time limit. In order to try to differentiate between these
two situations, if the trusted ATP system fails to prove a theorem obligation, GDV generates
a satisfiability obligation to show that the set consisting of the parents and the negation of the
inferred formula is satisfiable, which is then attempted by the trusted ATP. If this is successful
then it is known that the theorem obligation cannot be discharged.

The verification of logical consequences ensures the soundness of the inference steps, but
does not check for relevance. As a contradiction in first order logic entails everything, an
inference step with contradictory parents can soundly infer anything. An inference step with
contradictory parents can thus always be the last in a derivation. If it is required that an inference
step (that infers a formula other than a false formula) is not irrelevant, a satisfiability obligation
consisting of the parents of the inference must be discharged. This verification step should not be
implemented during conversion from FOF to CNF when there is a single parent formulae that is
(derived from) the negation of the conjecture—such parent formulae are correctly unsatisfiable
when the conjecture is a tautology.

Due to the semi-decidability of first order logic, satisfiability obligations cannot be guaran-
teed to be discharged. Three alternative techniques, described here in order of preference, may
be used to show satisfiability. First, a finite model of the axioms may be found using a model
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generation system such as MACE [McC03a] or Paradox [CS03]. Second, a saturation of the
axioms may be found using a saturating ATP system such as SPASS or EP [Sch02b]. Third,
an attempt to show the axioms to be contradictory can be made using a refutation system. If
that succeeds then the satisfiability obligation cannot be discharged. If it fails it provides an
incomplete assurance that the formulae are satisfiable.

3.2 Splitting

Many contemporary ATPs that build refutations for CNF problems use splitting. Splitting re-
duces a CNF problem to one or more potentially easier problems by dividing a clause into two
subclauses. There are several variants of splitting that have been implemented in specific ATPs,
including explicit splitting as implemented in SPASS, and forms of pseudo-splitting as imple-
mented in Vampire [RV01] and E. Verification of splitting inferences requires several theorem
obligations to be discharged.

Explicit splitting takes a CNF problem S ∪ {L ∨ R}, in which L and R do not share any
variables, and replaces it by two subproblems S∪{L} and S∪{R}. If both the subproblems have
refutations (i.e., are unsatisfiable), then it is assured that the original problem is unsatisfiable.
To verify an explicit splitting step’s role in establishing the overall unsatisfiability of the original
problem clauses, a theorem obligation to prove ¬(L ∨ R) from {¬L,¬R} is discharged.

Pseudo-splitting takes a CNF problem S ∪ {L ∨ R}, in which L and R do not share any
variables, and replaces {L∨R} by either (i) {L∨t,¬t∨R}, or (ii) {L ∨ t1, R ∨ t2,¬t1 ∨ ¬t2},
where t and ti are new propositional symbols. Vampire implements pseudo-splitting by (i) and
E implements it by (ii). The replacement does not change the satisfiability of the clause set—
any model of the original clause set can be extended to a model of the modified clause set, and
any model of the modified clause set satisfies the original one [RV01, Sch02a]. The underlying
justification for pseudo-splitting is that it is equivalent to inferring logical consequences of the
split clause and new definitional axioms: for (i) t ⇔ ¬∀L, and for (ii) t1 ⇔ ¬∀L and
t2 ⇔ ¬∀R. Pseudo-splitting steps are verified by discharging theorem obligations that prove
each of the replacement clauses from the split clause and the new definitional axiom(s).

3.3 Leaf Formulae

The leaf formulae of a derivation must occur in or be derived from the original problem—
otherwise, the ATP solves a different problem. To verify this, leaf theorem obligations to prove
each leaf formula from the input formulae must be discharged. An advantage of the semantic
technique for verifying leaf formulae is that it is robust to some of the preprocessing inferences
that are performed by ATP systems. For example, Gandalf [Tam98] may factor and simplify
input clauses before storing them in its clause data structure. The leaves of refutations output
by Gandalf may thus be derived from input clauses, rather than directly being input clauses.
These leaves are logical consequences of the original input clauses, and can be verified using
this technique.

If the input problem is in FOF (i.e., first-order form including quantifiers, rather than CNF),
and the derivation is a CNF refutation, the leaf clauses may have been formed with the use
of Skolemization. Such leaf clauses are not logical consequences of the FOF input formulae.
Skolemization steps can be incompletely verified by discharging a theorem obligation to prove
the parent formula from the Skolemized formula. Although this is an incomplete verification
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step (i.e., unsound Skolemization steps can pass this check), it catches simple “typographical”
errors and thus provides some additional assurance.

3.4 Structural Verification

All forms of proof checking also include, at least implicitly, some structural verification. Struc-
tural verification checks that inferences have been used correctly in the context of the overall
derivation.

For all derivations, two structural checks are necessary: First, the specified parents of each
inference step must exist in the derivation. When semantic verification is used to verify each in-
ference step then the formation of the obligation problems relies on the existence of the parents,
and thus performs this check. The check can also be done explicitly. Second, there must not be
any loops in the derivation. For derivations that claim to be CNF refutations, it is necessary to
also check that the empty clause has been derived.

For refutations that use explicit splitting, two further structural checks are necessary. First,
it is necessary to check that both subproblems have been refuted. Second, it is necessary to
check that L (R) and its descendants are not used in the refutation of the R (L) subproblem.
For refutations that use pseudo-splitting, a structural check is required to ensure that the “new
propositional symbols” really are new, and not used elsewhere in the refutation.

3.5 Implementation

The semantic verification techniques described here have been implemented in the GDV sys-
tem. GDV is implemented in C, using the JJParser library for input, output, and data structure
support. The inputs to GDV are a derivation in TPTP format [SZS04], the original problem in
TPTP format, a set of trusted ATPs to discharge the theorem obligations, and a CPU time limit
for the trusted ATPs for each obligation. SystemOnTPTP [Sut00a] is used to run the trusted
ATPs. Obligations that are successfully discharged are reported, and the output from the dis-
charging is optionally retained for later inspection. If an obligation cannot be discharged, or a
structural check fails, GDV reports the failure.

4 Experimental Setup

In [DFS05], we evaluate multiple ATPs on 366 safety obligations generated from the certifica-
tion of programs generated by the AUTOBAYES and AUTOFILTER program synthesis systems.
Of those 366 problems, 109 were selected for inclusion in the TPTP problem library [SS05],
the standard library of test problem for testing and evaluating ATPs. The 109 problems were
selected based on the results of evaluating several state-of-the-art ATPs against the problems,
and were selected so as to be “difficult”, i.e., with TPTP difficulty ratings strictly between 0.0
and 1.0 [SS01].

As a practical test and evaluation of the proof checking approach described in this paper,
we scrutinized the proofs generated for these 109 problems by the ATPs EP (Version 0.82)
[Sch02b]3 and SPASS (Version 2.1) [WB+02]. Both EP and SPASS work by converting the
axioms and the negated conjecture to CNF, and then using clausal reasoning to find a refutation.

3EP is a simple extension of E that produces explicit proofs.
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The proofs output by EP include details of the FOF-to-CNF conversion, and the subsequent
CNF refutation. The proofs are natively output in TPTP format. The proofs output by SPASS
document the CNF refutation, but not the FOF-to-CNF conversion. The SPASS proofs are
natively in DFG format, which is translated to TPTP format prior to verification. Both systems
are based on the superposition calculus, but differ in the specific inference rules used. A notable
difference is EP’s use of pseudo-splitting and SPASS’s use of explicit splitting. Additionally,
the systems have quite different control heuristics. As a result the proofs produced by the two
systems have quite different characteristics.

For the verification of the EP proofs, GDV was configured to verify all aspects of each proof:
the derivation was structurally verified, leaves were verified as being (possibly derived) from the
input problem, all inferred formulae were semantically verified with relevance checking, and all
splitting steps were verified. For the verification of the SPASS proofs, GDV was configured to
verify selected aspects of each proof: leaves were not verified because SPASS does not docu-
ment the FOF to CNF conversion, all inferred formulae were semantically verified but without
relevance checking, all splitting steps were verified but the independence of the subproblems
was not verified in the larger proofs because of the computational complexity, and the deriva-
tion was structurally verified (with the exception of the splitting aspect just mentioned). The
trusted ATPs used were Otter 3.3 [McC03b] for discharging theorem obligations, Paradox 1.1
[CS03] for finding finite models, and SPASS 2.1 for finding saturations.4 The outputs from
Otter, Paradox, and SPASS were retained, and are available as part of any certificate. The veri-
fications were done on Intel P4 2.8GHz computers with 1GB RAM, and running the Linux 2.4
operating system. The CPU time limit for each discharge was 10s.

5 Experimental Results

Out of the 109 problems, EP can solve 48 and SPASS can solve 83, thus giving a total of 131
proofs to check. The 48 problems solved by EP are a subset of those solved by SPASS, but
the proofs are obviously different. Table 1 summarizes the results. The first column gives
the overall values for the verification of the EP proofs, including the verification of the steps
converting from FOF to CNF and the inferences in the refutation. The next two columns split
these values into the two parts. The final column gives the values for the verification of the
inferences in SPASS’s refutations. The last two columns are thus directly comparable. The
first row shows the number of problems solved out of the 109, and the second row shows how
many of those were verified by GDV with the checks described above. The next row gives
the numbers of theorem obligations that were generated for the verifications and discharged by
Otter. The next row gives the average number of theorem obligations per proof, and then the
next five rows give their distribution, thus giving an indication of the distribution of the proof
sizes. The next block of four rows gives the distribution of the CPU times taken by Otter to
discharge the theorem obligations. The final row gives the numbers of finite models found in
the relevance checking done for EP proofs.

The table shows that 46 of the 48 problems solved by EP were fully verified. Both failure
cases were caused by Otter’s inability to discharge obligations arising from steps in the FOF-
to-CNF conversion. In particular, the obligations to verify the step that negates the conjecture,

4Satisfiability tests, which employ saturation finding, are used only in the verification of leaves and relevance
checking. As these checks were not done for the SPASS proofs, this is not a case of SPASS checking itself.
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EP EP-CNF EP-Ref SPASS
Problems solved 48 83
Proofs verified 46 83
Obligations discharged 590 309 281 19737
Average obligations / proof 12.8 6.7 6.1 273.8
Theorem obligations / proof
0 0 0 19 0
1-10 35 38 22 52
10-100 10 8 4 13
100-1000 1 0 1 12
> 1000 0 0 0 6
Discharge time / obligation
0.0-0.1s 208 123 85 19737
0.1-0.2s 362 172 190 0
0.2-0.3s 17 7 10 0
> 0.3s 3 3 0 0
Models found 361 140 221 -

Table 1: Proof Checking Results

which entails proving the negation of the negation from the original, could not be discharged.
All 83 of the SPASS proofs passed the verification checks chosen.

Most of the proofs require less than 10 obligations to be discharged, both for EP and SPASS.
However, SPASS produces some very large proofs that consequently require a very large num-
ber of obligations to be discharged; the largest proof resulted in 3493 theorem obligations. This
difference in distribution leads to a significant difference between the average numbers of obli-
gations that had to be discharged per problem. At the same time, all of the SPASS obligations
were discharged in almost no time. These figures indicate that SPASS proofs contain very many
small, easily verified steps, while EP proofs have slightly larger steps. Note that 19 of the EP
proofs were completed in the FOF-to-CNF conversion, and EP’s largest proof steps, requiring
the longest times for verification, over 0.3s, are within the FOF-to-CNF conversion. There is
some overhead starting Otter for each theorem obligation, and this dominates the wall clock
time taken (i.e., the time the user has to wait for a proof to be verified). It is thus preferable to
have fewer but harder theorem obligations to discharge, as offered by EP.

Of the 590 theorem obligations discharged for EP, 361 had the parents verified as satisfiable,
confirming the relevance of the parents to the inferred clause. The remaining 229 theorems were
not relevance checked because one of the parent clauses was derived from the negation of the
conjecture.

6 Conclusions and Future Work

In this paper, we have described and evaluated a semantic derivation verification approach to
proof checking. The evaluation, which is the main contribution of the paper, is based on 109
safety obligations arising in the certification of auto-generated aerospace code.
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The results are encouraging. Our system is able to verify 129 out of the 131 proofs found by
EP and SPASS, showing that the proof checking task is practically tractable. The vast majority
of the proof check obligations are discharged in less than 0.1 seconds. The majority of the
proofs are checked completely in less than 15 seconds wall clock time, although some of the
longer proofs cannot be verified completely and even the partial checks can take more than five
minutes. Moreover, as a consequence of the substantial overheads our current implementation
incurs for intermediate format transformation steps, proof checking often requires more wall
clock time than the actual proof search. However, this is not a fundamental limitation and could
easily be changed by an optimized implementation.

There is still a lot of room for improvement. The verification of some trivial proof steps in
the FOF-to-CNF conversion failed. The corresponding obligations were of the form L |= ¬¬L,
where L is very large. The trusted ATP (i.e., Otter) does not recognize this form and produces a
very difficult CNF obligation. Using SPASS as the trusted ATP, however, solves this problem.
Similarly, some forms of structural verification are very expensive, in particular for the large
proofs found by SPASS. Moreover, the approach relies on the production ATP generating well
documented proofs. Currently, only EP satisfies this criterion. SPASS proofs are missing the
FOF-to-CNF conversion, and Vampire does not record the negation of the original goal, which
makes its proofs uncheckable. Finally, we have evaluated our techniques only for ATPs based
on the superposition calculus. Future work will thus be concerned with systems based on other
calculi, such as non-clausal resolution or model elimination.

Derivation verification does not provide absolute assurance. The biggest gap is the verifica-
tion of Skolemization steps, which are only satisfiability-preserving. While the full verification
of such steps (and clausification in general) requires further research and experimentation, the
partial verification provided here already gives some additional assurance. Other potential gaps
are that the construction of the proof check obligations is wrong, and that the trusted ATP con-
tains errors. Moreover, derivation verification as described here only addresses errors in the
proofs found by the ATPs but not any errors in the construction and, in particular, simplifica-
tion of the original verification conditions. However, similar techniques can also be applied to
double-check the rewrite engine and rules used for simplification.

Ultimately, however, in order to convince users of the validity of the overall certification
process, there needs to be some explicit linking or tracing between the logical entities and the
program being certified. In [DF05], we describe a browser which enables a two-way linking
between the verification conditions and the individual statements of the annotated program. We
are also developing an extension to the VCG which adds “semantic markup” to formulas in the
form of labels which explain their origin and meaning. The accumulated labels can then be
converted into text and used to interpret the generated verification conditions. We would like
to combine tracing, textual rendering, and proof checking into an integrated environment for
certification.
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